\begin{tabbing} (\=(ExRepD$\cdot$) \+ \\[0ex]CollapseTHEN ((((if (((first\_nat 2:n)) = 0) then (Repeat (MoveToConcl ({-}1) \-\\[0ex])\=) else (RepeatFor (first\_nat 2:n) (MoveToConcl ({-}1))))$\cdot$) \+ \\[0ex]CollapseTHEN ((( \-\\[0ex]C\=ompleteInductionOnNat) \+ \\[0ex]CollapseTHEN (((Auto$\cdot$) \\[0ex]CollapseTHEN (((Decide $\exists$$i$:\{0..$n$$^{-}$\}\=\+ \\[0ex]($\uparrow$($P$($i$))) \-\\[0ex]$\cdot$) \\[0ex] \-\\[0ex]CollapseTHENA (Auto$\cdot$))$\cdot$))$\cdot$))$\cdot$))$\cdot$))$\cdot$ \end{tabbing}